曰韩免费_91久久精品国产亚洲_一区二区成人影院_九一视频在线免费观看_91国视频_亚洲成人中文在线

2023考研英语阅读经典试题及答案

雕龙文库 分享 时间: 收藏本文

2023考研英语阅读经典试题及答案

  SAMPLE 10

  [物理学]

  The use of heat pumps has been held back largely by skepticism about advertisers claims that heat pumps can provide as many as two units of thermal energy for each unit of electrical energy used, thus apparently contradicting the principle of energy conservation.

  Heat pumps circulate a fluid refrigerant that cycles alternatively from its liquid phase to its vapor phase in a closed loop. The refrigerant, starting as a low-temperature, low-pressure vapor, enters a compressor driven by an electric motor. The refrigerant leaves the compressor as a hot, dense vapor and flows through a heat exchanger called the condenser, which transfers heat from the refrigerant to a body of air. Now the refrigerant, as a high-pressure, cooled liquid, confronts a flow restriction which causes the pressure to drop. As the pressure falls, the refrigerant expands and partially vaporizes, becoming chilled. It then passes through a second heat exchanger, the evaporator, which transfers heat from the air to the refrigerant, reducing the temperature of this second body of air. Of the two heat exchangers, one is located inside, and the other one outside the house, so each is in contact with a different body of air: room air and outside air, respectively.

  The flow direction of refrigerant through a heat pump is controlled by valves. When the refrigerant flow is reversed, the heat exchangers switch function. This flow-reversal capability allows heat pumps either to heat or cool room air.

  Now, if under certain conditions a heat pump puts out more thermal energy than it consumes in electrical energy, has the law of energy conservation been challenged? No, not even remotely: the additional input of thermal energy into the circulating refrigerant via the evaporator accounts for the difference in the energy equation.

  Unfortunately there is one real problem. The heating capacity of a heat pump decreases as the outdoor temperature falls. The drop in capacity is caused by the lessening amount of refrigerant mass moved through the compressor at one time. The heating capacity is proportional to this mass flow rate: the less the mass of refrigerant being compressed, the less the thermal load it can transfer through the heat-pump cycle. The volume flow rate of refrigerant vapor through the single-speed rotary compressor used in heat pumps is approximately constant. But cold refrigerant vapor entering a compressor is at lower pressure than warmer vapor. Therefore, the mass of cold refrigerant and thus the thermal energy it carries is less than if the refrigerant vapor were warmer before compression.

  Here, then, lies a genuine drawback of heat pumps: in extremely cold climates where the most heat is needed heat pumps are least able to supply enough heat.

  1. The primary purpose of the text is to

  [A] explain the differences in the working of a heat pump when the outdoor temperature changes.

  [B] contrast the heating and the cooling modes of heat pumps.

  [C] describe heat pumps, their use, and factors affecting their use.

  [D] advocate the more widespread use of heat pumps.

  2. The author resolves the question of whether heat pumps run counter to the principle of energy conservation by

  [A] carefully qualifying the meaning of that principle.

  [B] pointing out a factual effort in the statement that gives rise to this question.

  [C] supplying additional relevant facts.

  [D] denying the relevance of that principle to heat pumps.

  3. It can be inferred from the text that, in the course of a heating season, the heating capacity of a heat pump is greatest when

  [A] heating is least essential.

  [B] electricity rates are lowest.

  [C] its compressor runs the fastest.

  [D] outdoor temperatures hold steady.

  4. If the authors assessment of the use of heat pumps is correct, which of the following best expresses the lesson that advertisers should learn from this case?

  [A] Do not make exaggerated claims about the products you are trying to promote.

  [B] Focus your advertising campaign on vague analogies and veiled implications instead of on facts.

  [C] Do not use facts in your advertising that will strain the prospective clients ability to believe.

  [D] Do not assume in your advertising that the prospective clients know even the most elementary scientific principles.

  5. The text suggests that heat pumps would be used more widely if

  [A] they could also be used as air conditioners.

  [B] they could be moved around to supply heat where it is most needed.

  [C] their heat output could be thermostatically controlled.

  [D] people appreciated the role of the evaporator in the energy equation.

  

  SAMPLE 10

  [物理学]

  The use of heat pumps has been held back largely by skepticism about advertisers claims that heat pumps can provide as many as two units of thermal energy for each unit of electrical energy used, thus apparently contradicting the principle of energy conservation.

  Heat pumps circulate a fluid refrigerant that cycles alternatively from its liquid phase to its vapor phase in a closed loop. The refrigerant, starting as a low-temperature, low-pressure vapor, enters a compressor driven by an electric motor. The refrigerant leaves the compressor as a hot, dense vapor and flows through a heat exchanger called the condenser, which transfers heat from the refrigerant to a body of air. Now the refrigerant, as a high-pressure, cooled liquid, confronts a flow restriction which causes the pressure to drop. As the pressure falls, the refrigerant expands and partially vaporizes, becoming chilled. It then passes through a second heat exchanger, the evaporator, which transfers heat from the air to the refrigerant, reducing the temperature of this second body of air. Of the two heat exchangers, one is located inside, and the other one outside the house, so each is in contact with a different body of air: room air and outside air, respectively.

  The flow direction of refrigerant through a heat pump is controlled by valves. When the refrigerant flow is reversed, the heat exchangers switch function. This flow-reversal capability allows heat pumps either to heat or cool room air.

  Now, if under certain conditions a heat pump puts out more thermal energy than it consumes in electrical energy, has the law of energy conservation been challenged? No, not even remotely: the additional input of thermal energy into the circulating refrigerant via the evaporator accounts for the difference in the energy equation.

  Unfortunately there is one real problem. The heating capacity of a heat pump decreases as the outdoor temperature falls. The drop in capacity is caused by the lessening amount of refrigerant mass moved through the compressor at one time. The heating capacity is proportional to this mass flow rate: the less the mass of refrigerant being compressed, the less the thermal load it can transfer through the heat-pump cycle. The volume flow rate of refrigerant vapor through the single-speed rotary compressor used in heat pumps is approximately constant. But cold refrigerant vapor entering a compressor is at lower pressure than warmer vapor. Therefore, the mass of cold refrigerant and thus the thermal energy it carries is less than if the refrigerant vapor were warmer before compression.

  Here, then, lies a genuine drawback of heat pumps: in extremely cold climates where the most heat is needed heat pumps are least able to supply enough heat.

  1. The primary purpose of the text is to

  [A] explain the differences in the working of a heat pump when the outdoor temperature changes.

  [B] contrast the heating and the cooling modes of heat pumps.

  [C] describe heat pumps, their use, and factors affecting their use.

  [D] advocate the more widespread use of heat pumps.

  2. The author resolves the question of whether heat pumps run counter to the principle of energy conservation by

  [A] carefully qualifying the meaning of that principle.

  [B] pointing out a factual effort in the statement that gives rise to this question.

  [C] supplying additional relevant facts.

  [D] denying the relevance of that principle to heat pumps.

  3. It can be inferred from the text that, in the course of a heating season, the heating capacity of a heat pump is greatest when

  [A] heating is least essential.

  [B] electricity rates are lowest.

  [C] its compressor runs the fastest.

  [D] outdoor temperatures hold steady.

  4. If the authors assessment of the use of heat pumps is correct, which of the following best expresses the lesson that advertisers should learn from this case?

  [A] Do not make exaggerated claims about the products you are trying to promote.

  [B] Focus your advertising campaign on vague analogies and veiled implications instead of on facts.

  [C] Do not use facts in your advertising that will strain the prospective clients ability to believe.

  [D] Do not assume in your advertising that the prospective clients know even the most elementary scientific principles.

  5. The text suggests that heat pumps would be used more widely if

  [A] they could also be used as air conditioners.

  [B] they could be moved around to supply heat where it is most needed.

  [C] their heat output could be thermostatically controlled.

  [D] people appreciated the role of the evaporator in the energy equation.

  

主站蜘蛛池模板: 亚洲一区亚洲二区 | 黄色片网站免费看 | 亚洲人成电影院在线观看 | 亚洲国产欧美国产第一区二区三区 | 在线视频一区二区三区在线播放 | 国产精品国产三级国产av′ | 亚洲一区二区三区免费视频 | 成人黄色一级毛片 | 黄色视屏在线免费观看 | 九色在线观看 | 国产91边对白在线播放 | 四虎影视网址 | 国产av影片麻豆精品传媒 | 天堂在线www网亚洲 天堂在线www中文 | 动漫精品专区一区二区三区不卡 | 黄色免费网站视频 | 理论片免费午夜 | 伊人9| 精品综合久久久久久蜜月 | 精品无码国产污污污免费网站 | 日韩国产在线 | 国产播放隔着超薄丝袜进入 | 看片午夜 | 四虎影视在线影院www | 台湾swag在线视频 | 在线播放美女视频网站 | 伊人不卡久久大香线蕉综合影院 | 很黄很色的摸下面的视频 | 国产 高清 在线 | 97色在线| 精品亚洲成在人线av无码 | 熟妇人妻av中文字幕老熟妇 | 中日韩欧美在线观看 | 国产熟女一区二区三区五月婷 | 亚洲精品一区二区三区第四页 | 性视频福利在线看 | 在线三级播放 | 国精产品999国精产品官网 | 国产成人午夜福利在线播放 | 国产成人精品免费 | 亚洲精品国偷拍自产在线观看蜜桃 |