曰韩免费_91久久精品国产亚洲_一区二区成人影院_九一视频在线免费观看_91国视频_亚洲成人中文在线

雅思英语阅读作文试题解析(网友版)

雕龙文库 分享 时间: 收藏本文

雅思英语阅读作文试题解析(网友版)

  Rogue theory of smell gets a boost   Published online: 6 December 2006   Rogue theory of smell gets a boost   1.  A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.   2.  Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.   3.  Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.   4.  This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized.   5.  Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   6.  But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass).   7.  Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.   8.  This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.   9.  Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield.   10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it. But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.   11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.   12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible.   13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed.   14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is.

  

  Rogue theory of smell gets a boost   Published online: 6 December 2006   Rogue theory of smell gets a boost   1.  A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.   2.  Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.   3.  Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.   4.  This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized.   5.  Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   6.  But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass).   7.  Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.   8.  This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.   9.  Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield.   10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it. But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.   11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.   12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible.   13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed.   14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is.

  

主站蜘蛛池模板: 无码人妻精品一区二区三区在线 | 男女男精品免费视频网站 | 久久久精品欧美一区二区免费 | 一本大道无码日韩精品影视_ | 青青久久网 | 国产公开免费人成视频 | 成人人免费夜夜视频观看 | 精品无码无人网站免费视频 | 瑜伽裤国产一区二区三区 | 精品欧美日韩一区二区三区 | 日本老熟妇50岁丰满 | 色多多www | 亚洲人成在线精品不卡网 | 一级国产 | 人妻丰满熟妇aⅴ无码 | 亚洲欧美日韩精品一区 | 美女福利视频国产免费观看 | 国色天香社区视频在线 | 国产专区欧美 | 午夜a一级毛片一.成 | 亚洲91| a久久久久一级毛片护士免费 | 欧美特黄特色三级视频在线观看 | 午夜美女福利视频 | 午夜视频在线免费 | 香蕉伊大在线中字色中文 | 午夜福利伦伦电影理论片在线观看 | 欧美肥老太牲交大战 | 久久伊人一区二区三区四区 | 日韩欧美一区二区不卡看片 | 最新国产精品拍自在线播放 | 亚洲日产韩国一二三四区 | 黄色特级片 | www.日本精品| 精品亚洲综合在线第一区 | 99久久99热久久| 激情总合网 | 午夜大片 | 久久受www免费人成看片 | 亚洲jizzjizz | 亚州免费一级毛片 |